Special Triplets solution codechef

Special Triplets solution codechef

Gintoki has been very lazy recently and he hasn’t made enough money to pay the rent this month. So the old landlady has given him a problem to solve instead, if he can solve this problem the rent will be waived. The problem is as follows:

A triplet of integers (A,B,C)(A,B,C) is considered to be special if it satisfies the following properties for a given integer NN :

• AmodB=CAmodB=C
• BmodC=0BmodC=0
• 1A,B,CN1≤A,B,C≤N

Example: There are three special triplets for N=3N=3.

• (1,3,1)(1,3,1) is a special triplet, since (1mod3)=1(1mod3)=1 and (3mod1)=0(3mod1)=0.
• (1,2,1)(1,2,1) is a special triplet, since (1mod2)=1(1mod2)=1 and (2mod1)=0(2mod1)=0.
• (3,2,1)(3,2,1) is a special triplet, since (3mod2)=1(3mod2)=1 and (2mod1)=0(2mod1)=0.

The landlady gives Gintoki an integer NN. Now Gintoki needs to find the number of special triplets. Can you help him to find the answer?

Input Format

• The first line of the input contains a single integer TT denoting the number of test cases. The description of TT test cases follows.
• The first and only line of each test case contains a single integer NN.

Output Format

• For each testcase, output in a single line the number of special triplets.

Constraints

• 1T101≤T≤10
• 2N1052≤N≤105

Subtask #3 (75 points): Original constraints

3
3
4
5

3
6
9

Explanation

Test case 11: It is explained in the problem statement.

Test case 22: The special triplets are (1,3,1)(1,3,1)(1,2,1)(1,2,1)(3,2,1)(3,2,1)(1,4,1)(1,4,1)(4,3,1)(4,3,1)(2,4,2)(2,4,2). Hence the answer is 66.

Test case 33: The special triplets are (1,3,1)(1,3,1)(1,2,1)(1,2,1)(3,2,1)(3,2,1)(1,4,1)(1,4,1)(4,3,1)(4,3,1)(1,5,1)(1,5,1)(5,4,1)(5,4,1)(5,2,1)(5,2,1)(2,4,2)(2,4,2). Hence the answer is 99.