Mikasa solution codeforces

Mikasa solution codeforces

You are given two integers nn and mm. Find the MEXMEX of the sequence n0,n1,,nmn⊕0,n⊕1,…,n⊕m. Here,  is the bitwise XOR operator.

MEXMEX of the sequence of non-negative integers is the smallest non-negative integer that doesn’t appear in this sequence. For example, MEX(0,1,2,4)=3MEX⁡(0,1,2,4)=3, and MEX(1,2021)=0MEX⁡(1,2021)=0.

Input

The first line contains a single integer tt (1t300001≤t≤30000)  — the number of test cases.

The first and only line of each test case contains two integers nn and mm (0n,m1090≤n,m≤109).

Output

For each test case, print a single integer  — the answer to the problem.

Example

input

Copy
5
3 5
4 6
3 2
69 696
123456 654321

output

Copy
4
3
0
640
530866
Note

In the first test case, the sequence is 30,31,32,33,34,353⊕0,3⊕1,3⊕2,3⊕3,3⊕4,3⊕5, or 3,2,1,0,7,63,2,1,0,7,6. The smallest non-negative integer which isn’t present in the sequence i. e. the MEXMEX of the sequence is 44.

In the second test case, the sequence is 40,41,42,43,44,45,464⊕0,4⊕1,4⊕2,4⊕3,4⊕4,4⊕5,4⊕6, or 4,5,6,7,0,1,24,5,6,7,0,1,2. The smallest non-negative integer which isn’t present in the sequence i. e. the MEXMEX of the sequence is 33.

In the third test case, the sequence is 30,31,323⊕0,3⊕1,3⊕2, or 3,2,13,2,1. The smallest non-negative integer which isn’t present in the sequence i. e. the MEXMEX of the sequence is 00.